Relating Seedling Quality and Survival to Cold Storage of Southern Pine Seedlings in the Presence of *Pythium*

Paul Jackson
Auburn University
SFNMC Contact Meeting
July 21, 2008

Container vs Bareroot Seedlings

Container

- More expensive
- Intact root plug after lifting
 - Higher survival
 - Extended planting season
- Storable throughout fall and winter

$\mathsf{WHY}?$

Bareroot

- Cheaper
- Exposed root system
 - Lower survival
 - Defined planting season, especially if stored
- Poor storability before mid-December

The Million \$ Question Why do container seedlings store better than bareroot seedlings?

- •At lifting, bareroot seedling root systems can be torn, especially if soil conditions are saturated or frozen
- •There is speculation that *Pythium dimorphum* uses the injured roots as pathways for infection
- •Seedlings are then placed in storage where the fungus may thrive in the moist, cool conditions

Pythium diseases

- Post-emergence damping off is evident when the seedling buckles at the hypocotyl area and falls over
- The absence of fine, lateral roots is an indicator of *Pythium* root rot
- These diseases spread more rapidly in bareroot nurseries

Pythium dimorphum

- This species was discovered on feeder roots of loblolly pine (*Pinus taeda*) in Louisiana
- It can lay dormant in the soil for years
- Moist, poorly drained soils allow zoospores to move throughout nursery beds, especially after irrigation or rainfall

Isolation and survival percentages from longleaf pine roots treated with fungicides and cold stored for four weeks

Seedling survival from bareroot longleaf pine roots inoculated with *Pythium dimorphum* after 4 weeks of storage at 3-5°C in a 1994 supplementary field trial

Longleaf Pine Seedling Storability Experiment

Bareroot Longleaf

- Inoculated with *P. dimorphum* and *P. irregulare*
- Three levels: 50, 100, & 200 g

Container Longleaf

- Inoculated with *P. dimorphum* and *P. irregulare*
- One level: 200 g
- Root plug wounded or not wounded

- <u>Storage Periods</u>: three, six, and twelve weeks in plastic bags at 4-5°C (3 reps of 30 seedlings/treatment)
- <u>Survival</u>: seedlings outplanted after each storage period and monitored for six months

Bareroot Longleaf Survival: Stored 3 Weeks-Outplanted 24 Weeks

Bareroot Longleaf: Stored 6 Weeks-Outplanted 21 Weeks

Bareroot Longleaf: Stored 12 Weeks-Outplanted 18 Weeks

Survival: Bareroot vs Container Seedlings

= 3 wks stored/24 out

= 6 stored/21 out

= 12 stored/18 out

Bareroot Longleaf Pine Root Growth Potential After Storage

Treatments:

- Inoculated with *P. dimorphum* and *P. irregulare*
- Two levels: 50 and 200 g
- Cold stored for three weeks in plastic bags at 4-5°C
- Placed in aerated aquariums (hydroponics)

(3 reps of 30 seedlings/treatment)

Measurements:

- RCD measured before going into the aquariums and after 60 days
- New roots > 0.5 cm were counted

RGP :	<u>Experim</u>	<u>ient: R</u>	esults

	100	7 2021	Helit. Iteb	<u> </u>	
Treatment	New	RCD 1	RCD 2	RCD	Survival
	Roots	(mm)	(mm)	Difference	(%)
	> 0.5 cm				
Control	20	9.94	10.12	0.19	82
P. Dim	13	9.28	9.11	-0.17	73
50					
P. Dim 200	14	9.74	9.45	-0.29	84
P. Irr	30	8.30	8.29	-0.01	93
50					
P. Irr	19	8.85	8.60	-0.25	86
200					

Storability Research Happening Now

Loblolly

- Maybe there is something in peat that suppresses *Pythium*, allowing container seedlings to store better?
- We are growing container loblolly, longleaf (*Pinus palustris*), shortleaf (*Pinus echinata*), and slash (*Pinus elliottii*) using 100% perlite or 100% peat/perlite media
- Treatments are: inoculations with *P. dimorphum*, *P. irregulare*, or none; roots wounded or not wounded; cold storage for 0, 6, or 12 weeks
- •Survival will be monitored after storage in a greenhouse for four months

Storability Research Summary

- *Pythium* reduced survival of bareroot longleaf pine seedlings to < 15%
- Survival is worse with longer periods of cold storage
- *Pythium* is not affecting container longleaf pine seedling survival
- *Pythium* did not affect the root growth potential of bareroot longleaf pine seedlings
- Bareroot longleaf seedling RCD's shrunk during the RGP test with increasing levels of *Pythium*

Future Research

- P. dimorphum and P. irregulare pathogenicity (happening now)
- Container loblolly, longleaf, shortleaf, and slash seedling survival following several fall/winter lift dates, inoculations with *Pythium*, and cold storage (fall 08)
- Forest tree nursery soil surveys (fall & winter 08-09)
- Bareroot and container loblolly, shortleaf, and slash seedling survival following inoculations with *Pythium*, root wounding, and cold storage (winter 08-09/spring & summer 09)
- Root growth potential of bareroot loblolly, shortleaf, and slash seedlings following *Pythium* inoculations and cold storage (spring 09)
- *Pythium* growth rate on peat-amended agar (summer 09)

Thank You!

- SFNMC Members
- Doug Shelburne, Smurfit-Stone
- Wayne Bell, International Forest Company
- Drs. Scott Enebak and David South
- Co-op Staff: Dr. Tom Starkey, Tommy Hill, Marietjie Quicke, Barry Brooks, and Elizabeth Bowersock
- Forest Health Dynamics Laboratory-SFWS

Questions?

